News

Focus Scientifico: Prospettive di utilizzo dell’anidride carbonica supercritica in ambito conciario
Focus Scientifico: Prospettive di utilizzo dell’anidride carbonica supercritica in ambito conciario

Il processo conciario comporta un notevole sfruttamento della risorsa idrica per le lavorazioni ad umido, dalla riviera alla concia fino alla tintura ed ingrasso. Questo comporta al contempo un’elevata quantità di acqua di processo residua da trattare per la sua depurazione. L’acqua in queste fasi è ovviamente utilizzata nei lavaggi della pelle e come solvente per trasportare i prodotti chimici al suo interno.

Molte ricerche e sperimentazioni sono state affrontate nel corso degli ultimi anni al fine di trovare un’alternativa all’acqua come solvente per queste lavorazioni al fine di limitarne l’impatto sulle risorse idriche, come l’utilizzo di solventi organici più o meno efficaci e sostenibili.

Un campo di sperimentazione ha esplorato, per lo stesso obiettivo, l’applicazione dell’anidride carbonica (CO2) supercritica.

“Una sostanza si dice essere in uno stato supercritico quando si trova in condizioni di temperatura superiore alla temperatura critica e pressione superiore alla pressione critica. In tali condizioni, le proprietà della sostanza sono in parte analoghe a quelle di un liquido (ad esempio la densità) e in parte simili a quelle di un gas (ad esempio la viscosità)”.

Fig.1 Diagramma di stato dell’anidride carbonica, dove è visibile la zona in cui si realizza lo stato supercritico (supercritical fluid).

 

La CO2 supercritica, perciò, è caratterizzata da proprietà fisiche miste tra stato gassoso e liquido, che la potrebbero rendere un ottimo ed efficace solvente apolare, per l’estrazione di soluti aventi una bassa polarità, tanto da poter essere paragonata all’esano, con capacità di solubilizzazione vicina a quella propria di un liquido ed in alcuni casi, anche superiore. In particolare, quando la pressione è pari a 80 bar e la temperatura è pari a 31 °C la CO2 si trova in fase supercritica, non più gassosa, con una viscosità inferiore a quella dell’acqua (997 kg/m³), con un alto coefficiente di diffusività e una bassa viscosità, dando così la possibilità di comportarsi come un ottimo solvente soprattutto per le sostanze organiche. Le migliori proprietà di trasporto della CO2 supercritica dimostrano come essa possa interagire molto efficacemente con un soluto rispetto a un altro comune solvente organico.

 

Temperatura (°C) Densità (kg/m3) Volume (m3) Viscosità (cP) Fase
0 961,94 0,0010396 0,10989 Liquida
20 827,71 0,0012081 0,075717 Liquida
31 679,73 0,0014712 0,05332 Supercritica

I vantaggi non sono solo nel potere solubilizzanti ma la CO2 supercritica presenta la caratteristica di essere inerte, non tossica per gli addetti ai lavori e per l’ambiente circostante. Ha un costo contenuto e dopo aver esplicato la sua funzione può essere facilmente riconvertita allo stato gassoso e riutilizzata, per esempio, nello stesso processo.

Nell’industria dell’estrazione di principi attivi liposolubili da matrici naturali, la CO2 supercritica è una tecnologia oramai consolidata soprattutto per la produzione di alimenti funzionali, o integratori e nella medicina naturale, additivi per la salute, prodotti cosmetici e applicazioni farmaceutiche.

La tecnologia della CO2 supercritica è emersa come un’importante alternativa ai processi tradizionali con solventi organici e meccanici, grazie alla sua pressione critica moderata, che permette di contenere i costi di compressione, mentre la sua bassa temperatura critica consente l’estrazione di composti termosensibili senza degradazione.

Per il trattamento di substrati, la natura dei composti da estrarre o da trasportare non è sempre e solo apolare, ma spesso vi sono composti polari d’interesse (come per altro nel processo conciario). Lo sviluppo della tecnologia ha comunque rimediato con l’aggiunta di co-solventi alla CO2 supercritica, al fine di migliorare l’affinità del fluido verso composti polari, per cui si possono utilizzare assieme solventi come l’acqua, dimostrando, cosicché, la compatibilità dei due solventi come potrebbe avvenire sulle matrici collageniche. Oltre all’estrazione supercritica con la CO2 un certo numero di altre tecnologie supercritiche viene studiato e sviluppato per altre applicazioni interessanti, come la precipitazione di composti polari (precipitazione supercritica con anti-solvente, SAS) o la separazione di composti in miscele liquide (frazionamento supercritico in contro-corrente), per l’ottenimento di composti bioattivi più puri. Perseguire la ricerca delle tecnologie con la CO2 supercritica per diversi materiali potrebbe rivelarsi un asset strategico anche per il settore della concia.

La variabilità della tecnologia, come l’effetto della pressione e della composizione della CO2 sui rendimenti, l’effetto di miscele di co-solventi diverse, la possibilità di lavorare in batch o in continuo a portate variabili, permetterebbe di modulare l’applicazione in funzione dello scopo, come quello riferito al trattamento del pellame

Nella prossima sezione esploreremo le applicazioni messe in atto in ambito conciario e valuteremo le nuove possibilità dello sfruttamento di questa promettente tecnologia nel nostro settore.

 

07/11/2024

A cura del Dr. Marco Nogarole

Il Libro – CORARIUS, uno scrigno che custodisce segreti del mestiere e informazioni storiche sul cuoio, firmato dell’artigiano Felice Apostolo
Il Libro – CORARIUS, uno scrigno che custodisce segreti del mestiere e informazioni storiche sul cuoio, firmato dell’artigiano Felice Apostolo

La sua pubblicazione è del 2018 ma il libro “CORARIUS – lavorazione artigianale di Pelle e Cuoio”, firmato dallo stimato artigiano Felice Apostolo ed edito dall’Association Valdôtaine Archives Sonores, rappresenta ancora oggi un volume molto interessante, una sorta di scrigno che custodisce segreti del mestiere e informazioni storiche, una pubblicazione agile – con le sue 64 pagine – che sorprende per l’accuratezza dei testi in italiano e francese e coinvolge il lettore in un viaggio affascinante nel tempo e nella tecnica della lavorazione artigianale di pelle e cuoio. Un testo che l’autore ha dedicato alla sua famiglia arrivata in Valle d’Aosta nei primi decenni del 1800 con il bisnonno Celestino, “oriundo biellese” come recita la sua lapide nello storico cimitero di Sant’Orso, di mestiere conciatore, capostipite di una famiglia tutta dedita alla concia, alla lavorazione o al commercio delle pelli. Una presenza che è proseguita con il figlio Felice, conciatore e produttore di zoccoleria e selleria, poi con il primogenito di quest’ultimo, ovvero il padre dell’autore Celestino Mario, classe 1896, perfezionatosi dai Salesiani come calzolaio, ma dedicatosi alla produzione di zoccoli, collari per bestiame e commercio di calzature e articoli per artigiani del cuoio. Attività commerciale, per quanto riguarda le calzature, portata avanti dal figlio Pietro Giorgio, mentre Felice “Cino” si è specializzato nella produzione artigianale di articoli in pelle e cuoio di tradizione, nonché moderni. «Non ho la pretesa di insegnare il lavoro del cuoio e della pelle. – afferma Felice Apostolo – Ho annotato queste poche nozioni per non dimenticare quanto appreso, per divulgare le conoscenze accumulate in tanti anni di esperienza e per coprire un piccolo vuoto, vedendo un certo interesse per questo nobile materiale e non trovando sul mercato locale testi in merito». Pertanto, in “Coriarius” compaiono descrizioni minuziose di tutte le fasi di questa complessa attività artigianale: dal tipo di pelli impiegate alla concia, dagli attrezzi necessari alle diverse cuciture, dalle tecniche per fabbricare un paio di zoccoli a quelle per realizzare i collari per campanacci. Completa la pubblicazione una ricca appendice storica con i capitoli “Cino et sa famille: la passion du cuir”, “Les tanneries d’Aoste”, “Les socques au début di XXe siècle”, “L’arte più antica” e “Presenze e aspetti della produzione di manufatti in cuoio in Valle d’Aosta”.

Fonte lavalleenotizie.it/

 

Prorogati i bandi della Fondazione Mia ITS Academy Moda Campania: sei i percorsi di formazione
Prorogati i bandi della Fondazione Mia ITS Academy Moda Campania: sei i percorsi di formazione

Sono stati prorogati i tre bandi dedicati al settore pelle, della Fondazione Mia Academy ITS Moda Campania, di cui la Stazione Sperimentale è socio fondatore.

Nello specifico tre i corsi sono:

  • Leather Innovation Manager – POZZUOLI: Tecnico Superiore per il coordinamento dei processi di qualità, sostenibilità e innovazione
  • Leathergoods Innovation Specialist – SOLOFRA: Tecnico superiore esperto per la produzione sostenibile e digitale di articoli in pelle
  • Made In Italy Leather Fashion Manager – SOLOFRA: Tecnico superiore per la promozione e l’internazionalizzazione dei prodotti in pelle Made in Italy

In dettaglio, si tratta di percorsi formativi professionalizzanti rivolti ad un’utenza di età compresa tra i 18 e i 55 anni non compiuti, disoccupati e lavoratori, in possesso del diploma di scuola media superiore. Tutti i corsi hanno una durata di 1800 ore ripartite in un biennio, di cui 1080 ore di lezioni d’aula, laboratori pratici, workshop e 720 ore di tirocinio in azienda. Durante il biennio sono previste partecipazioni a Fiere ed Eventi di Settore, visite didattiche presso le aziende della filiera tessile-pelle.

Termine ultimo per la presentazione delle domande: 7 Gennaio 2025 ore 12.00

Per approfondimenti link qui

CPMC – AA VV.  “L’Innovazione nella Qualità: l’Utilizzo della Termografia nell’industria Conciaria”  
CPMC – AA VV. “L’Innovazione nella Qualità: l’Utilizzo della Termografia nell’industria Conciaria”  

Nell’era della tecnologia avanzata, l’industria conciaria sta vivendo una trasformazione significativa grazie all’adozione di tecniche di ispezione e controllo innovative volte a migliorare la qualità e l’efficienza dei processi produttivi. Tra le tecnologie che potrebbero essere utilizzate in questo settore, la termografia si distingue per la sua capacità di fornire un controllo qualita non distruttivo, offrendo un potenziale strumento per l’ottimizzazione delle diverse fasi di produzione della pelle. La termografia è una tecnica che sfrutta le radiazioni infrarosse per analizzare il flusso di calore in un materiale. Il risultato e una sequenza di termogrammi, ovvero immagini in cui ogni pixel rappresenta il valore della temperatura acquisita. L’analisi dei termogrammi consente di identificare difetti e anomalie che potrebbero sfuggire ai metodi di ispezione tradizionali.

Nel settore conciarlo, questo sistema potrebbe agevolare il controllo, spesso di tipo visivo. effettuato dagli operatori per individuare imperfezioni superficiali della pelle causate dalla sua natura e dai processi conciari. La capacita di effettuare un controllo qualità senza contatto è essenziale soprattutto quando è richiesto un attento controllo di qualita che garantisca allo stesso tempo l’integrità del prodotto.

Questa ricerca preliminare. realizzata nell’ambito del progetto SOLARIS, Sustainable Options for Leather Advances and Recycling Innovative Solutions, parte del Partenariato Esteso MICS (made in Italy Circolare e Sostenibile), finanziato dall’Unione Europea – Next Generation EU (PIANO NAZIONALE DI RIPRESA E RESILIENZA (PNNR) – MISSIONE 4 COMPONENTE 2, INVESTIMENTO 1.3, è finalizzata ad individuare le potenzialità di un sistema di ispezione basato sulla termografia per la rilevazione di difetti nelle pelli conciate. Le indagini termografiche si classificano in base alla presenza o meno di sorgenti esterne di calore. Si parla di termografia passiva quando si effettuano unicamente misure di temperatura, mentre è attiva se viene utilizzata una sorgente termica per riscaldare il campione in esame. In quest’ultimo caso, i difetti presenti nella pelle possono agire sulla diffusività termica e, quindi, sul tempo di propagazione del calore: la diversa risposta termica generata dalla presenza di un difetto può essere rilevata da una termocamera ad infrarossi.

Due principali metodi di analisi sono comunemente utilizzati nelle prove di termografia attiva. tecnica “Lock-in* impiega una sorgente termica con un’emissione di calore periodica nel tempo. La presenza di un difetto agisce come un ostacolo alla propagazione del calore, generando un ritardo nella propagazione dell’onda termica che può essere rilevata con opportune analisi nel dominio della frequenza. La tecnica “Pulsed”, invece, utilizza una sorgente termica con un’emissione di calore impulsiva. Una disomogeneita locale nella pelle limita in queste zone la trasmissione del calore e, quindi, la velocità di raffreddamento. L’analisi nel dominio del tempo della risposta termica transitoria del materiale consente di identificare la presenza del difetto. In questa ricerca, entrambe le metodologie sono state testate per la rilevazione di alcune tipologie di difetti presenti in campioni di pelle forniti dalla Stazione Sperimentale per l’industria delle Pelli e delle Materie Concianti. Nello specifico, i difetti esaminati

  1. distacco dello strato fiore (soffiatura)
  2. distacco della rifinizione della pelle
  3. macchie su prodotti semilavorati
  4. pieghe su pelle verniciata

Per tutte le tipologie di difetti, la modalità Pulsed si è rilevata la tecnica più promettente per l’ispezione termografica della pelle conciata. Questa analisi è stata condotta utilizzando due riscaldatori ad infrarossi (potenza nominale di 2 kW ciascuno) capaci di fornire un riscaldamento controllato e uniforme su un’ampia superficie di pelle in esame. I riscaldatori sono stati posizionati equidistanti dai campioni da testare, a una distanza di circa 50 cm e con un’inclinazione di circa 45. Questa configurazione è stata necessaria per ridurre l’interferenza delle sorgenti di calore nella misurazione dell’emissione termica del campione.

Una termocamera ad infrarossi con una risoluzione di 640 * 512 pixel mod. FLIR A6750c, è stata posizionata frontalmente al campione, a una distanza di circa 50 cm. I campioni di pelle sono stati posizionati su un supporto rigido nero e lievemente tirate per evitare disturbi nell’acquisizione termica.

In modalità Pulsed, i riscaldatori emettevano un impulso di calore della durata 0,4 s con una potenza complessiva nominale di 4 kW. La termocamera misurava con una frequenza di 60 termogrammi al secondo la fase di riscaldamento e raffreddamento del campione. Con l’analisi dei termogrammi è stato possibile osservare la variazione nel tempo della temperatura in ciascun pixel della matrice 640 x 512 con cui era stata suddivisa la superficie di pelle in esame. Poiché la curva di raffreddamento di ogni pixel dovrebbe seguire un modello esponenziale di temperatura decrescente nel tempo, le sequenze temporali per ogni pixel sono state interpolate con un modello matematico di riferimento

Successivamente, è stato calcolato per ogni pixel il coefficiente di determinazione, comunemente noto come R2 per quantificare quanto i dati sperimentali acquisiti dalla termocamera seguano il modello esponenziale. Lo scostamento da questo modello permette di rivelare la presenza di un’anomalia nel materiale. Infine, costruendo un’immagine in scala di grigi, la cui intensità dipende dal valore di Rº, è possibile definire la posizione, l’estensione e la forma del difetto.

 

I risultati ottenuti dalle analisi termografiche sono riportati brevemente di seguito.

Distacco dello strato fiore (soffiatura)

La mappa dei coefficienti di determinazione R° ottenuta nell’analisi del campione di pelle con una compromissione della struttura fibrosa della pelle.

La mappa Rª riproduce fedelmente in scala di grigi l’immagine del campione reale, evidenziando in modo chiaro e preciso le aree in cui si presenta questo difetto. Questa correlazione trà la mappa termogranca e l’immagine del

 campione conferma l’efficacia della tecnica di termografia pulsata nell’individuazione di difetti di delaminazione.

Distacco della rifinizione della pelle

Il distacco della rifinizione della pelle è un tipico difetto che generalmente non è visibile ad occhio nudo. Questo difetto provoca una discontinuità nella pelle lungo il suo spessore, influenzando in questo modo la trasmissione del calore. La mappa Rª ottenuta dal campione di pelle soggetto ad un distacco della rifinizione della pelle mostra delle disomogeneità legate a gradienti della velocità di raffreddamento.

 


Macchie su prodotti semilavorati

Le macchie sui prodotti semilavorati costituiscono un altro difetto che si può riscontrare nelle fasi di trattamento delle pelli, e possono essere riconducibili a diverse cause; alcune macchie possono essere difatti causate da ossidi metallici, dalla precipitazione di saponi di calcio o di cromo, oltre che essere determinate da possibili attacchi microbici. La natura delle macchie influenza lievemente la trasmissione del calore. Infatti, la mappa Rª non evidenzia con chiarezza l’estensione ed il perimetro del difetto. In questo caso, ulteriori indagini con diversi setup sperimentali (es. riscaldamento della pelle con diversi profili di emissione termica, utilizzo di termocamere con diverse bande spettrali› potrebbero rendere l’analisi termografica più accurata.

 

Pieghe su pelle verniciata

Queste pieghe possono essere determinate da errori nella fase di asciugaggio, piuttosto che da criticità emerse in fase di applicazione della rifinizione, oltre che dalla possibile migrazione a carico di sostanze in grado di compromettere l’adesività del finishing. Generalmente, non tutte le pieghe sono individuabili con un semplice controllo visivo, l’elaborazione dei termogrammi e la mappa R° permettono di evidenziare le zone affette dal difetto, anche quelle che non sono visibili o difficilmente visibili ad occhio nudo.

Questo studio preliminare evidenzia il potenziale della termografia come strumento efficace per la rilevazione di vari diletti che possono formarsi nella pelle durante il processo di concia. In particolare, la solatura del fiore e la formazione di pieghe sulla pelle verniciata possono essere identificate in modo accurato utilizzando la termografia con un setup sperimentale standard. La termografia ha mostrato una certa capacita di rilevazione per altri tipi di difetti. come le macchie sui prodotti semilavorati e il distacco della rifinizione, ma sono necessari ulteriori approfondimenti e ottimizzazioni del setup sperimentale per migliorare l’accuratezza di questo metodo di indagine.

La SSIP è intervenuta al XVII Convegno AICC tenutosi a Serino
La SSIP è intervenuta al XVII Convegno AICC tenutosi a Serino

La SSIP ha preso parte al XVII Convegno AICC (Ass. Italiana Chimici del Cuoio) che si è tenuto a Serino (Avellino), sul tema “Settore conciario: prospettive”. I saluti iniziali sono stati a cura di dott.ssa Franca NUTI (Presidente AICC), dott. Renato BERTOLI (Segretario AICC), dott. Gaetano MAFFEI (AlCC Campania) e del sindaco di Solofra Nicola Moretti.

Le Relazioni sono state: Università e Industria: Una Sinergia per Innovare la Sostenibilità dei Processi Conciari, a cura della prof.ssa Carmen TALOTTA  e della dott.ssa Veronica IULIANO (Dip. Chimica e Biologia “A. Zambelli” Univ. Studi di Salerno); Criteri di sostenibilità nelle comunicazioni B2B e B2C, a cura del dott. Gustavo DE FEO (ARS TINCTORIA); Innovazione nella quantificazione del Bisfenolo S (BPS): un approccio integrato tra spettroscopia infrarossa e chemiometria, a cura della dott. Costanza AGHEMO (I.C.A./.); Nuovi sviluppi e sperimentazioni con oli e funzionalizzazione maleica in concia ed ingrasso a cura del dott. Marco NOGAROLE (SSIP). Ampia la partecipazione generale della SSIP, che ha visto, oltre al dott. Marco Nogarole come relatore, una nutrita delegazione, capitanata dallo stesso Direttore Generale, dott. Edoardo Imperiale, con la partecipazione della dot.ssa Iossa, Resp. Politecnico del Cuoio, della dot.ssa Claudia Florio, Resp. Ricerca, oltre che di giovani ricercatori, tecnici e tecnologi dell’istituto.

Focus Scientifico – Applicazioni del riscaldamento dielettrico in radiofrequenza nei processi di manifattura del pellame
Focus Scientifico – Applicazioni del riscaldamento dielettrico in radiofrequenza nei processi di manifattura del pellame

Il riscaldamento dielettrico (DH) di un materiale si ottiene attraverso la sua esposizione ad un campo elettromagnetico alternato di opportuna potenza.

Tale tipo di riscaldamento sfrutta la reazione di un materiale isolante (dielettrico), o avente una piccola conduttività elettrica, sottoposto all’assorbimento di energia elettromagnetica.

Un materiale umido sotto l’azione di radiazione elettromagnetica ad alta frequenza reagisce in modo diverso, in base all’energia del campo elettromagnetica applicato. Nella banda di frequenze delle microonde (MW) vengono indotti moti rotazionali sulle molecole dipolari come l’acqua, che dissipano tale energia cinetica in calore [1]. Nella banda di radiofrequenza (RF) diventa determinante, ai fini della generazione di calore, l’accelerazione indotta sugli ioni dal campo elettromagnetico, ovvero attraverso migrazione ionica in fase acquosa, alla quale si associa il contributo derivante dalla dissipazione termica dei moti di allineamento al campo elettromagnetico oscillante delle molecole d’acqua [2].

A confronto con i metodi di riscaldamento/asciugatura classici, che operano via conduzione, convezione e irraggiamento, la generazione di calore dall’interno del materiale comporta una rapida evaporazione dell’acqua e la formazione di un gradiente di pressione. Tale variazione di pressione genera uno spostamento di acqua in forma liquida e vapore verso la superficie del materiale, dando luogo ad una evaporazione più veloce ed un minore riscaldamento del materiale stesso.

Per quanto concerne lo spettro elettromagnetico (EMS), le bande di frequenza utilizzabili ai fini del riscaldamento dielettrico appartengono a due classi principali delle radiazioni elettromagnetiche, entrambe di natura non ionizzante, ovvero la Radiofrequenza (RF) e le microonde (MW).

Accordi a livello internazionale disciplinano la destinazione d’uso delle frequenze dello spettro elettromagnetico, alcune delle quali sono assegnate all’uso industriale. In particolare, per il riscaldamento dielettrico sono assegnate le seguenti frequenze e bande ISM [3]

 

 

Tipo di emissione Intervallo di Frequenza Frequenze o bande ISM
Radiofrequenza 1 – 200 MHz 13,56 MHZ, 27,12 e 40,68 MHz
Microonde 300 MHz – 300 GHz 2450 MHz + banda 896 – 915 MHz

 

Gli effetti conseguibili con le due classi di emissione non sono equivalenti: infatti, ad esempio, il grado di penetrazione all’interno dei materiali dipende dal tipo di materiale e dalla lunghezza d’onda della radiazione incidente. A parità di materiale, minore è la frequenza ovvero maggiore la lunghezza d’onda, maggiore è il grado di penetrazione della radiazione, grado che si può essere quantificato con un parametro (half-power depth) che indica lo spessore di materiale in grado di ridurre del 50% l’energia dell’onda rispetto al valore incidente.

 

 

 

Essicazione pelle [4]

L’essicazione della pelle influenza in modo determinante la qualità del manufatto in cuoio, le cui proprietà fisico-meccaniche dipendono da modalità e velocità del processo di asciugatura. In generale, la ventilazione naturale, quella forzata con controllo della temperatura e dell’umidità e i sistemi in depressione costituisco un insieme di processi diffusi e spesso combinati tra loro. L’utilizzo di calore in depressione (P ≈ 200 Torr) permette una rimozione accelerata del contenuto d’acqua fino alla soglia del 15 % ÷ 20 %; un’ulteriore riduzione richiede l’applicazione di ventilazione naturale o forzata.

Nei processi di riscaldamento dielettrico la banda RF ha mostrato un’applicabilità ampia, mentre quella a frequenza maggiore (MW) ha evidenziato problemi di disuniformità, che originano surriscaldamenti locali del materiale. A favore dei processi RF gioca il fattore di perdita, la proprietà di dissipazione dell’energia in calore in un materiale soggetto a campi elettromagnetici, che permette un riscaldamento uniforme. Inoltre, il riscaldamento si modera in modo autonomo, via via che si riduce il contenuto di acqua. Il tal modo si riduce in modo consistente il restringimento del pellame.

Il processo si attua ponendo il materiale da trattare ad opportuna distanza da elettrodi, che costituiscono gli elementi di una “antenna dipolare”, collegati attraverso un sistema di adattamento di impedenza (accordo) ad una linea di trasmissione (cavo coassiale) con impedenza 50 Ω, che termina con il generatore/oscillatore a radiofrequenza (fig.2 [5])

 

 

 

 

 

 

Fig. 2 – Schema generale impianto

In fig.1 viene riportato il confronto di tempo di riduzione di umidità di un campione con le due diverse modalità, utilizzando per la parte DH-RF un apparato su scala pilota operante con potenza (massima) di 15 kW a 27,12 MHz.

 

 

 

 

 

 

 

 

 

Fig.1 – Confronto asciugatura RF Vs. sottovuoto c/ventilazione

Il processo DH-RF permette una asciugatura della pelle che non riduce la qualità generale del materiale, in termini di conservazione delle proprietà tensili, di mano e aspetto, priva di migrazioni di sostanze grasse e coloranti. Il processo è applicabile a tutti i tipi di pellame, con costi di impianto del tutto paragonabili ai processi in vuoto/ventilazione, ma con dimensioni ridotte rispetto a questi ultimi. In termini di efficienza, il riscaldamento si attua in tempi assai inferiori e l’energia viene trasferita con perdite di gran lunga inferiori ai sistemi convettivi classici.

 

Processi di rifinizione [6]

La tecnologia DH:RF si presta anche ad essere utilizzata anche nei processi di rifinizione, dove la formazione del film di rivestimento richiede la rimozione della aliquota di acqua del formulato applicato.

Il riscaldamento è selettivo, avviene dall’interno del materiale (endogeno) e interessa principalmente lo strato di coating bagnato stesso, essendo l’acqua la più suscettibile al campo elettromagnetico oscillante. Pertanto, non viene riscaldata l’intera sezione del pellame, come nel processo classico di asciugatura della rifinizione.

L’utilizzo di generatori di radiofrequenza permette di modulare in modo preciso l’entità di energia trasferita al materiale, prevenendo eventuali surriscaldamenti. Il processo a energia termica, oltre a rendere necessario il trattamento e convogliamento di masse d’aria, viene spesso associato a stadi di raffreddamento supplementari con ulteriore aggravio del dispendio energetico.

I benefici dei processi di trattamento del pellame con radiofrequenza si possono riassumere pertanto in maggiore efficienza energetica, incremento di velocità di asciugatura e mantenimento della qualità generale del prodotto finale in termini di mano del prodotto, conservazione delle proprietà tensili e assenza di restringimenti indesiderati.

 

 

A cura del Dr. Francesco De Laurentiis – 04-10-2024

 

Bibliografia

[1] J.G. Brennan “Dielectric and Osmotic Drying” The University of Reading, Reading, UK – 2003, Elsevier Science, pp. 1938-1942.

[2] Xu Zhou & Shaojin Wang (2018): Recent developments in radio frequency drying of food and agricultural products: A review, Drying Technology,

[3] “Operation of equipment or appliances designed to generate and use locally radiofrequency energy for industrial, scientific, medical, domestic or similar purposes, excluding applications in the field of telecommunications.”   ITU Radio Regulations, Section IV. Radio Stations and Systems – Article 1.15, Definition:” Industrial, Scientific and Medical (ISM) applications (of radio frequency energy)”.

[4] P. A. Balakrishnan, * N. Vedaraman, V. John Sundar, C. Muralidharan, and G. Swaminathan “Radio Frequency Heating—A Prospective Leather Drying System for Future”, Drying Technology Vol. 22, No. 8 pp. 1969-1982, 2004.

[5] Peter L. Jones & Andrew T. Rowley (1996) Dielectric Drying, Drying Technology: An International Journal, 14:5, 1063-1098,

[6] Atti del convegno AICC – F. Bressan, E. Stangherlin; S. Carlotto “La tecnologia a Radiofrequenza applicata alla rifinizione” – Officine di Cartigliano SpA.

Minimum 4 characters